A note on the gap between the first two eigenvalues for the Schrodinger operator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 19477
(http://iopscience.iop.org/0305-4470/19/3/026)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 10:09

Please note that terms and conditions apply.

COMMENT

A note on the gap between the first two eigenvalues for the Schrödinger operator

R Benguria \dagger
Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 5487, Santiago, Chile

Received 8 July 1985

Abstract

By means of a commutation formula, I give a simple proof of the upper bound of Wong et al on the gap between the first two eigenvalues in the Schrödinger operator. Unfortunately this proof does not seem to generalise into higher dimensions.

In the last two years there has been some interest in estimating the gap between the eigenvalues of the Schrödinger operator (Kirsch and Simon 1985, Wong et al 1984). The purpose of this comment is to give a simple proof of the upper bound on the gap between the first two eigenvalues found by Wong et al (1984). The proof I give here is based on a commutation formula and, unfortunately, only seems to work in one dimension.

Consider the one-dimensional Schrödinger equation

$$
\begin{equation*}
-\mathrm{d}^{2} u / \mathrm{d} x^{2}+V u=\lambda u \tag{1}
\end{equation*}
$$

on the finite interval (a, b) with Dirichlet boundary conditions. Here $V(x)$ is a bounded non-negative potential defined on $[a, b]$. Let λ_{1} and λ_{2} denote the first and second non-zero eigenvalues of this equation. Then, we have the following.

Lemma.

$$
\begin{equation*}
\lambda_{2}-\lambda_{1} \leqslant 4 \lambda_{1} . \tag{2}
\end{equation*}
$$

Remarks.
(i) Actually Wong et al (1984) have proved this lemma in dimension n. In that case (2) reads $\lambda_{2}-\lambda_{1} \leqslant(4 / n) \lambda_{1}$.
(ii) From equation (2) one can obtain the bound

$$
\begin{equation*}
\lambda_{2}-\lambda_{1} \leqslant[2 \pi /(b-a)]^{2}+4 \sup _{[a, b]} V \tag{3}
\end{equation*}
$$

(see Wong et al 1984).
Proof. Let u_{1} be the ground state of the Schrödinger operator $-\mathrm{d}^{2} / \mathrm{d} x^{2}+V$ with Dirichlet boundary conditions on (a, b). Let v be the logarithmic derivative of u_{1}, i.e. $v=u_{1}^{\prime} / u_{1}$ (here ' denotes differentiation with respect to x). It is well known (see, e.g., Crum

[^0]1955, Deift 1978) that the Schrödinger operator $-\mathrm{d}^{2} / \mathrm{d} x^{2}+\tilde{V}$ with $\tilde{V} \equiv V-2 v^{\prime}$ has the same spectrum as $-\mathrm{d}^{2} / \mathrm{d} x^{2}+V$ except for λ_{1}. Thus, λ_{2} is the ground state of $-\mathrm{d}^{2} / \mathrm{d} x^{2}+$ \tilde{V}. We then estimate $\lambda_{2}-\lambda_{1}$ using the Rayleigh-Ritz variational principle. In fact,

$$
\begin{align*}
\lambda_{2}-\lambda_{1} & \leqslant\left[u_{1},\left(-\mathrm{d}^{2} / \mathrm{d} x^{2}+\tilde{V}\right) u_{1}\right]-\left[u_{1},\left(-\mathrm{d}^{2} / \mathrm{d} x^{2}+V\right) u_{1}\right] \\
& =\left[u_{1},(\tilde{V}-V) u_{1}\right]=-2\left(u_{1}, v^{\prime} u_{1}\right) \\
& =-2 \int_{a}^{b} u_{1}^{2} v^{\prime} \mathrm{d} x . \tag{4}
\end{align*}
$$

Finally, integrating the right-hand side of (4) by parts we get

$$
\begin{equation*}
\lambda_{2}-\lambda_{1} \leqslant 4 \int_{a}^{b} u_{1} u_{1}^{\prime} v \mathrm{~d} x=4 \int_{a}^{b}\left(u_{1}^{\prime}\right)^{2} \mathrm{~d} x \tag{5}
\end{equation*}
$$

However,

$$
\lambda_{1}=\int_{a}^{b}\left(u_{1}^{\prime}\right)^{2} \mathrm{~d} x+\int_{a}^{b} V u_{1}^{2} \mathrm{~d} x
$$

and V is non-negative; hence $\int_{a}^{b}\left(u_{1}^{\prime}\right)^{2} \mathrm{~d} x \leqslant \lambda_{1}$, which concludes the proof of the lemma.
Unfortunately, the commutation formula we use here is very much tied to one dimension and therefore this proof does not seem to go over into higher dimensions.

Acknowledgment

It is a pleasure to thank Romualdo Tabensky for stimulating discussions.

References

Crum M M 1955 Q. J. Math. 6121
Deift P A 1978 Duke Math. J. 45267
Kirsch W and Simon B 1985 Commun. Math. Phys. 97453
Wong B, Yau S S T and Yau S T 1984 Preprint, An estimate of the gap of the first two eigenvalues in the Schrödinger operator

[^0]: \dagger Research partially supported by Departamento de Investigación y Bibliotecas, Universidad de Chile.

